Answer:
Option D
Explanation:
Let I = $\int_{}^{} (27e^{9x}+e^{12x})^{1/3}dx$
= $\int_{}^{}e^{3x} (27+e^{3x})^{1/3}dx $
Put $27+e^{3x}$ = t 3$e^{3x}$dx = dt
I = $\frac{1}{3}\int_{}^{}t^{1/3}dt$
= $\frac{1}{3}\frac{t^{4/3}}{4/3}+C $
= $(1/4)(27+e^{3x})^{4/3}+C$